The generator matrix

 1  0  1  1  1  1  1 X+3  1  1  1 2X  1  1 X+3  1  1  0  1  1  1  1  1 2X  1  1 2X+6  1  1  1 X+6  1  1  1  1  0  1  1  1  6  1  1  6  1  1  1  1  0  1  1  1  1  1  1 2X X+3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X 2X+6  1  1  1  6  1  1  1  1
 0  1 2X+4  8 X+3 X+1 X+2  1 2X  4 2X+8  1 2X+4 X+3  1  8  0  1 2X X+1 X+2  4 2X+8  1  6 2X+7  1  5 X+7 X+6  1 X+2 2X+5 2X  4  1 2X+6  7 X+5  1 2X X+2  1  4 X+5 2X+6  7  1  0 X+3 2X+4 X+1  8 2X+8  1  1 X+1 2X+4  0 X+3  6 X+6  6 X+6  7  6 2X+7 2X+7 X+7 2X+7 X+6  7 X+5  2  1  1 2X+6 2X+2 2X+6  1 X+7 X+7 X+5  0
 0  0  3  0  3  6  6  0  0  6  3  3  0  6  3  3  6  6  3  0  6  3  0  6  3  6  0  6  3  0  6  0  6  0  0  6  6  3  3  3  3  3  3  0  0  6  6  0  0  3  3  6  0  0  0  3  3  0  6  6  3  0  0  3  6  6  3  6  0  0  6  3  3  6  6  0  0  6  3  0  0  3  0  6
 0  0  0  6  6  3  6  6  6  0  3  0  0  6  6  6  0  6  0  3  3  3  3  0  0  0  0  6  3  6  6  3  3  0  3  0  0  0  3  6  6  6  0  0  6  6  3  6  6  0  3  0  3  6  6  0  0  3  6  0  6  0  3  3  6  3  6  3  0  6  3  6  0  0  3  3  3  0  3  3  6  6  0  3

generates a code of length 84 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 162.

Homogenous weight enumerator: w(x)=1x^0+76x^162+108x^163+1710x^164+288x^165+234x^166+1326x^167+234x^168+126x^169+702x^170+166x^171+126x^172+1170x^173+92x^174+54x^175+114x^176+24x^177+4x^180+2x^192+2x^198+2x^201

The gray image is a code over GF(3) with n=756, k=8 and d=486.
This code was found by Heurico 1.16 in 0.4 seconds.